正導(dǎo)電纜技改、降耗和效益雙豐收
浙江正導(dǎo)電纜有限公司投入600萬元淘汰高能耗的絞對機和變壓器,以及對電磁調(diào)速注塑機進行變頻改造后, 不僅實現(xiàn)了年節(jié)電77萬度、產(chǎn)品廢品率下降30%等預(yù)期目標(biāo),而且新增銷售收入2850萬元,新增利潤216萬元,迎來了降耗和效益雙豐收。
浙江正導(dǎo)電纜有限公司是一家專業(yè)生產(chǎn)通信電纜、數(shù)據(jù)電纜和同軸電纜的高新技術(shù)企業(yè),該企業(yè)產(chǎn)品廣泛應(yīng)用于中國電信、聯(lián)通、鐵通、廣電等網(wǎng)絡(luò)建設(shè),上世紀(jì)末起批量出口海外市場,與北美、歐洲、中東、非洲的40多個國家和地區(qū)保持著貿(mào)易往來,還是世界500強英國電信集團的亞洲通信電纜供應(yīng)商。企業(yè)規(guī)模越做越大,生產(chǎn)過程中的高能耗也越來越突出,企業(yè)決策層越來越感到:節(jié)能增效是企業(yè)實現(xiàn)可持續(xù)發(fā)展的必由之路。
據(jù)"正導(dǎo)電纜"的一位負責(zé)人介紹:不技改,高能耗、低效益的設(shè)備使企業(yè)生產(chǎn)成本越來越高,而且工藝上也無法更新,將使企業(yè)失去市場競爭力。企業(yè)決定從去年開始籌建節(jié)能增效項目、進行設(shè)備改造。技改后,新型絞對機和變頻注塑機的單機能耗由原來的6.6度和23.0度降為現(xiàn)如今的4.7度和16.3度,再加上企業(yè)將生產(chǎn)車間內(nèi)起保護裝置的變壓器全部由S7型改用了S9節(jié)能型變壓器,每年能為企業(yè)節(jié)約用電77萬度。
由于電纜生產(chǎn)是典型的料重、工輕的行業(yè),原材料的價格幾乎占到了總成本的70%至80%左右。新引進的節(jié)能絞對機以及改造后的變頻調(diào)速注塑機采用了國內(nèi)先進的生產(chǎn)工序,不僅原材料成品率高,而且成品速度也大大提升。據(jù)介紹,該企業(yè)現(xiàn)在的廢品率比設(shè)備改造前下降了30%,制造成本明顯降低,為公司帶來了不小的收益
超導(dǎo)材料基礎(chǔ)知識介紹
超導(dǎo)材料具有在一定的低溫條件下呈現(xiàn)出電阻等于零以及排斥磁力線的性質(zhì)的材料。現(xiàn)已發(fā)現(xiàn)有28種元素和幾千種合金和化合物可以成為超導(dǎo)體。
特性 超導(dǎo)材料和常規(guī)導(dǎo)電材料的性能有很大的不同。主要有以下性能。①零電阻性:超導(dǎo)材料處于超導(dǎo)態(tài)時電阻為零,能夠無損耗地傳輸電能。如果用磁場在超導(dǎo)環(huán)中引發(fā)感生電流,這一電流可以毫不衰減地維持下去。這種“持續(xù)電流”已多次在實驗中觀察到。②完全抗磁性:超導(dǎo)材料處于超導(dǎo)態(tài)時,只要外加磁場不超過一定值,磁力線不能透入,超導(dǎo)材料內(nèi)的磁場恒為零。③約瑟夫森效應(yīng):兩超導(dǎo)材料之間有一薄絕緣層(厚度約1nm)而形成低電阻連接時,會有電子對穿過絕緣層形成電流,而絕緣層兩側(cè)沒有電壓,即絕緣層也成了超導(dǎo)體。當(dāng)電流超過一定值后,絕緣層兩側(cè)出現(xiàn)電壓U(也可加一電壓U),同時,直流電流變成高頻交流電,并向外輻射電磁波,其頻率為,其中h為普朗克常數(shù),e為電子電荷。這些特性構(gòu)成了超導(dǎo)材料在科學(xué)技術(shù)領(lǐng)域越來越引人注目的各類應(yīng)用的依據(jù)。
基本臨界參量 有以下 3個基本臨界參量。①臨界溫度:外磁場為零時超導(dǎo)材料由正常態(tài)轉(zhuǎn)變?yōu)槌瑢?dǎo)態(tài)(或相反)的溫度,以Tc表示。Tc值因材料不同而異。已測得超導(dǎo)材料的最低Tc是鎢,為0.012K。到1987年,臨界溫度最高值已提高到100K左右。②臨界磁場:使超導(dǎo)材料的超導(dǎo)態(tài)破壞而轉(zhuǎn)變到正常態(tài)所需的磁場強度,以Hc表示。Hc與溫度T 的關(guān)系為Hc=H0[1-(T/Tc)2],式中H0為0K時的臨界磁場。③臨界電流和臨界電流密度:通過超導(dǎo)材料的電流達到一定數(shù)值時也會使超導(dǎo)態(tài)破態(tài)而轉(zhuǎn)變?yōu)檎B(tài),以Ic表示。Ic一般隨溫度和外磁場的增加而減少。單位截面積所承載的Ic稱為臨界電流密度,以Jc表示。
超導(dǎo)材料的這些參量限定了應(yīng)用材料的條件,因而尋找高參量的新型超導(dǎo)材料成了人們研究的重要課題。以Tc為例,從1911年荷蘭物理學(xué)家H.開默林-昂內(nèi)斯發(fā)現(xiàn)超導(dǎo)電性(Hg,Tc=4.2K)起,直到1986年以前,人們發(fā)現(xiàn)的最高的 Tc才達到23.2K(Nb3Ge,1973)。1986年瑞士物理學(xué)家K.A.米勒和聯(lián)邦德國物理學(xué)家J.G.貝德諾爾茨發(fā)現(xiàn)了氧化物陶瓷材料的超導(dǎo)電性,從而將Tc提高到35K。之后僅一年時間,新材料的Tc已提高到100K左右。這種突破為超導(dǎo)材料的應(yīng)用開辟了廣闊的前景,米勒和貝德諾爾茨也因此榮獲1987年諾貝爾物理學(xué)獎金。
分類 超導(dǎo)材料按其化學(xué)成分可分為元素材料、合金材料、化合物材料和超導(dǎo)陶瓷。①超導(dǎo)元素:在常壓下有28種元素具超導(dǎo)電性,其中鈮(Nb)的Tc最高,為9.26K。電工中實際應(yīng)用的主要是鈮和鉛(Pb,Tc=7.201K),已用于制造超導(dǎo)交流電力電纜、高Q值諧振腔等。② 合金材料: 超導(dǎo)元素加入某些其他元素作合金成分, 可以使超導(dǎo)材料的全部性能提高。如最先應(yīng)用的鈮鋯合金(Nb-75Zr),其Tc為10.8K,Hc為8.7特。繼后發(fā)展了鈮鈦合金,雖然Tc稍低了些,但Hc高得多,在給定磁場能承載更大電流。其性能是Nb-33Ti,Tc=9.3K,Hc=11.0特;Nb-60Ti,Tc=9.3K,Hc=12特(4.2K)。目前鈮鈦合金是用于7~8特磁場下的主要超導(dǎo)磁體材料。鈮鈦合金再加入鉭的三元合金,性能進一步提高,Nb-60Ti-4Ta的性能是,Tc=9.9K,Hc=12.4特(4.2K);Nb-70Ti-5Ta的性能是,Tc=9.8K,Hc=12.8特。③超導(dǎo)化合物:超導(dǎo)元素與其他元素化合常有很好的超導(dǎo)性能。如已大量使用的Nb3Sn,其Tc=18.1K,Hc=24.5特。其他重要的超導(dǎo)化合物還有V3Ga,Tc=16.8K,Hc=24特;Nb3Al,Tc=18.8K,Hc=30特。④超導(dǎo)陶瓷:20世紀(jì)80年代初,米勒和貝德諾爾茨開始注意到某些氧化物陶瓷材料可能有超導(dǎo)電性,他們的小組對一些材料進行了試驗,于1986年在鑭-鋇-銅-氧化物中發(fā)現(xiàn)了Tc=35K的超導(dǎo)電性。1987年,中國、美國、日本等國科學(xué)家在鋇-釔-銅氧化物中發(fā)現(xiàn)Tc處于液氮溫區(qū)有超導(dǎo)電性,使超導(dǎo)陶瓷成為極有發(fā)展前景的超導(dǎo)材料。
應(yīng)用 超導(dǎo)材料具有的優(yōu)異特性使它從被發(fā)現(xiàn)之日起,就向人類展示了誘人的應(yīng)用前景。但要實際應(yīng)用超導(dǎo)材料又受到一系列因素的制約,這首先是它的臨界參量,其次還有材料制作的工藝等問題(例如脆性的超導(dǎo)陶瓷如何制成柔細的線材就有一系列工藝問題)。到80年代,超導(dǎo)材料的應(yīng)用主要有:①利用材料的超導(dǎo)電性可制作磁體,應(yīng)用于電機、高能粒子加速器、磁懸浮運輸、受控?zé)岷朔磻?yīng)、儲能等;可制作電力電纜,用于大容量輸電(功率可達10000MVA);可制作通信電纜和天線,其性能優(yōu)于常規(guī)材料。②利用材料的完全抗磁性可制作無摩擦陀螺儀和軸承。③利用約瑟夫森效應(yīng)可制作一系列精密測量儀表以及輻射探測器、微波發(fā)生器、邏輯元件等。利用約瑟夫森結(jié)作計算機的邏輯和存儲元件,其運算速度比高性能集成電路的快10~20倍,功耗只有四分之一。
1911年,荷蘭物理學(xué)家昂尼斯(1853~1926)發(fā)現(xiàn),水銀的電阻率并不象預(yù)料的那樣隨溫度降低逐漸減小,而是當(dāng)溫度降到4.15K附近時,水銀的電阻突然降到零。某些金屬、合金和化合物,在溫度降到絕對零度附近某一特定溫度時,它們的電阻率突然減小到無法測量的現(xiàn)象叫做超導(dǎo)現(xiàn)象,能夠發(fā)生超導(dǎo)現(xiàn)象的物質(zhì)叫做超導(dǎo)體。超導(dǎo)體由正常態(tài)轉(zhuǎn)變?yōu)槌瑢?dǎo)態(tài)的溫度稱為這種物質(zhì)的轉(zhuǎn)變溫度(或臨界溫度)TC,F(xiàn)已發(fā)現(xiàn)大多數(shù)金屬元素以及數(shù)以千計的合金、化合物都在不同條件下顯示出超導(dǎo)性。如鎢的轉(zhuǎn)變溫度為0.012K,鋅為0.75K,鋁為1.196K,鉛為7.193K。
超導(dǎo)體得天獨厚的特性,使它可能在各種領(lǐng)域得到廣泛的應(yīng)用。但由于早期的超導(dǎo)體存在于液氦極低溫度條件下,極大地限制了超導(dǎo)材料的應(yīng)用。人們一直在探索高溫超導(dǎo)體,從1911年到1986年,75年間從水銀的4.2K提高到鈮三鍺的23.22K,才提高了19K。
1986年,高溫超導(dǎo)體的研究取得了重大的突破。掀起了以研究金屬氧化物陶瓷材料為對象,以尋找高臨界溫度超導(dǎo)體為目標(biāo)的“超導(dǎo)熱”。全世界有260多個實驗小組參加了這場競賽。
1986年1月,美國國際商用機器公司設(shè)在瑞士蘇黎世實驗室科學(xué)家柏諾茲和繆勒首先發(fā)現(xiàn)鋇鑭銅氧化物是高溫超導(dǎo)體,將超導(dǎo)溫度提高到30K;緊接著,日本東京大學(xué)工學(xué)部又將超導(dǎo)溫度提高到37K;12月30日,美國休斯敦大學(xué)宣布,美籍華裔科學(xué)家朱經(jīng)武又將超導(dǎo)溫度提高到40.2K。
政策法規(guī)